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ABSTRACT   

In this paper we focus on: a) enhancing the performance of existing barcode systems and b) building a barcode 
system for mobile applications.  First we introduce a new concept of generating a parametric number representation 
system by fusing a number of representation systems that use multiplication, addition, and other operations. Second 
we show how one can generate a secure, reliable, and high capacity color barcode by using the fused system. The 
representation, symbols, and colors may be used as encryption keys that can be encoded into barcodes, thus 
eliminating the direct dependence on cryptographic techniques. To supply an extra layer of security, the fused 
system also allows one to encrypt given data using different types of encryption methods. In addition, this fused 
system can be used to improve image processing applications and cryptography. 
 
Keywords: Barcode, Multiple Base Representation, Fibonacci/Lucas p-codes, Double Base Representation, Cell/ 
mobile phones  

1.   INTRODUCTION 
 
Since the 1960’s, barcodes have provided optical machine-readable representations of data. Initially used to label 
railroad cars, barcodes are now laid on almost every medium, from paper and cardboard to plastics and metals and 
from skin to DNA1. Though other technologies are being developed for consumers to scan objects, including radio 
waves, computer chips or satellite location systems, barcodes maintain their popularity due to their low cost, low 
rate of error, high information capacity, and portability2.  The potential and demand for barcode technology 
continues to increase with constantly improving digital technologies. The recent integration of these technologies, 
namely through the pairing of mobile camera phones and high density barcodes, can fulfill the demand for electronic 
data exchange. For instance, in Japan and Korea, people can save and exchange Facebook information, receive the 
nutritional information about their McDonald’s meal, board airplanes using their phones and wireless payments3. 
Despite its huge potential, however, the use of camera phones to scan barcodes is not widespread. Resolution limits, 
distortion, blurring, and noise induced by the phone camera hinder the direct use of most existing bar codes for 
mobile phones4. These problems are exacerbated when dealing with camera phones that generate low to medium 
quality images (less than 640 x480 pixels)5.  Questions that have been raised include: Are the existing barcodes 
suitable for scanning by mobile phones? Is it necessary to design a new barcode tailored for mobile phones4?  As 
private wireless transactions may be prone to hacking and piracy, an additional question is how can make barcodes 
more secure? 

 
Companies have developed their own unique, proprietary barcode formats that are better geared toward mobile 
applications2. These developments have resulted in designs that vary dramatically from those of traditional barcodes, 
which represent data in the widths and spacings of black parallel lines. These barcodes, also known as linear or 1D 
(1 dimensional) barcodes or symbologies carry a limited amount of information with few security features. Other  
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symbologies, such as 2-D and color barcodes, have thus been looked at in an effort to make barcode systems more 
efficient, accessible, and secure. Many of these symbologies are similar to their linear counterparts in that they are 
based on binary representations. They differ, however, in the amount of information they can hold. In exchange for 
the increased information content, 2D and color barcodes have also increased the complexity of recognition 
algorithms, as they require greater image segmentation6. Thus, due to the varying resolutions of mobile camera 
phones, the imaging quality of a given camera phone may not be satisfactory for decoding a high density 2D or color 
barcode4.   In addition, image capture by the phone camera in a variety of lighting conditions may not retain enough 
discriminate information of color and grayscale. 

 
In the following, we introduce a new representation system to generate secure, reliable, and high capacity barcodes 
that are easier for cell phones to decode. We call this representation system the Multiple Base Number System 
(MNBS). MBNS fuses several number representation systems including the double base number system, which has 
recently been introduced to offer more sparse and efficient means of representing data. MBNS can be applied to 
barcode symbols with a variety of widths, colors, and vertical arrays to represent more information. The rest of this 
paper is organized as follows: Section II introduces some necessary background information. A concept of 
generating fused number representation system is provided in Section III.  In Section IV, the fused number 
representation system is used to construct more efficient and error-resistant barcode systems.  Section V offers 
concluding remarks and suggestions for future work.  

2. BACKGROUND:  NUMBER REPRESENTATIONS  
 
Below we review some number representations, most notably Fibonacci and Lucas numbers and their 
generalizations. We also introduce new Fibonacci and Lucas p-number based parametric representation number 
systems, which are later implemented in developing color barcodes.  
 
Fibonacci and Lucas Sequences: Fibonacci and Lucas (F-L) sequences include weighted F-L numbers, F-L p-
numbers, n-dimensional (Meta) F-L numbers, and random F-L numbers. In this article, we focus on sequences that 
are generated using the first two classes of numbers. 
 
Fibonacci and Lucas (F-L) Numbers7: Fibonacci (fn) and Lucas (ln) numbers can be presented recursively as  

                    ,, 2121 −−−− +=+= kkkkkk lllfff                                                       (1) 

where f0=0, f1=1, l0=2, l1=1, l2=3, k≥2.Subsequent terms of F-L numbers are thus defined as the sum of their two 
predecessors. Note that a Lucas number lk can be also expressed in terms of the Fibonacci numbers as: 

1 1 1 1 12 ;  ;  ( ) / 5,k k k k k k k k kl f f l f f f l l− − + − += + = + = +                             (2) 

 
Weighted Fibonacci and Lucas (F-L) P-Numbers7: Numbers that are given “weight” based on their coefficients 
and are defined by the following recurrence: 
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where a and b are some constants and p is a non-negative integer. In the following, we consider the case in which a 
= b = 1. Note that F-Lucas p-number representations include an “infinite” number of various representations. For 
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values p=0 and p=1, for instance, the F-L p-representations respectively reduce to the well-known binary and F-L 
systems previously discussed. As p →∞ , the F-L p-representations become the “unitary code” in which 

1 1 ...1
X

X = + +14243
.
 Other number systems can be generated by varying the value of p. The initial sequences for the 

first five p-values are given in the table below.  
Table of Fibonacci and Lucas P-Numbers 

P Fibonacci p-numbers Lucas p-numbers 

0 0,1,2,4,8,16,32,64,128,512,1024… 1,1,2,4,8,16,32, 64,128,256,512,1024, 2048… 

1 0,1,1,2,3,5,8,13,21,34,55,89,143… 2,1,3,4,7,11,18,29,47,76, 123, 199, 322…  

2 0,1,1,1,2,3,4,6,9,13,19,28,41,60… 3,1,1,4,5,6,10,15,21,31,46, 67, 98… 

3 0,1,1,1,1,2,3,4,5,7,10,14,19,26,36,50,69,95.. 4,1,1,1,5,6,7,8,13,19,26, 34, 47… 

4 0,1,1,1,1,1,2,3,4,5,6,8,11,15,20,26,34,45,60,80… 5,1,1,1,1,6,7,8,9,10,16,23, 31… 

 
Parametric Representations: Consider the following expansion of an integer X                     

1 2 2 1 0( , ) ( 1, ) ( 2, ) ... (2, ) (1, ) , (5)k k k mX a R k u a R k u a R k u a R u a R u a a Z− −= + − + − + + + + ∈
  
where ( , )R k u  is a parametric base sequence of the number system. The table below gives some sample 
representation systems we can generate from (5). 

Table of Parametric Representations 
Case R(k,u) Representation 

Signed Binary 2k8  1 2 2 1
1 2 2 1 02 2 2 ... 2 2 , { 1, 0,1}  (6)k k k

k k k ma a a a a a a− −
− −+ + + + + + ∈ −  

 

Signed Ternary 3k 9  1 2 2 1
1 2 2 1 03 3 3 ... 3 3 , { 1, 0 ,1} o r  {0,1, 2} (7 )k k k

k k k mb b b b b b b− −
− −+ + + + + + ∈ −  

Signed General rk10  1 2 2 1
1 2 2 1 0... , {0, 1, 2 , ..., ( 1)} (8)k k k

k k k mc r c r c r c r c r c c r− −
− −+ + + + + + ∈ ± ± ± −  

P-Fibonacci F(p)
k
7 (p) (p) (p) (p) (p)

k k k-1 k-1 2 2 1 1 mF  + b F  + ...+ , {0,1},  F  is a Fibonacci p-number   X (9)mb b F b F b+ ∈ ≤  

Double Base 

pkqu11 1 1 2 2
, 1, 1 2 , 2 0 ,0 ,

,

... , { 0 ,1} , (1 0 )
( )  k ,  0 ; ( ) 2 , 3

k u k u k u
k u k u k u m n

m n

d p q d p q d p q d d
g en era lize d u d k sp e c ifica lly k u

− − − −
− − − −+ + + + ∈

< ≤ < = =
 

Prime Pk
12 k k k-1 k-1 2 2 1 m + e P  + ...+ , {0,1},  P  is a prime number   X (11)me P e P eP e+ ∈ ≤

 
 
Many such systems are sparse but redundant. We are interested the conditions that lead to these systems’ unique 
representations and minimal expansions. For instance, it has been shown that the representation R(k,u) = qk, where q 
is an integer ≥ 2 is unique and minimal if  two consecutive digits 1 0  for a ll kk kc c − = 8, or the coefficients 

, 0,1,2,...,mc m k=  satisfy the following two conditions13: 

1

1 1

| | ,
,

| | | | , 0
m m

m m m m

c c r fo r a l l m
c c i f c c

+

+ +

+ <⎧
⎨ < <⎩  

Case 1 can also be extended to finding a unique Fibonacci representation (Zeckendorf’s Theorem). Such a 
representation for an integer X exists if: X=Fk-1, k=1,2,3,4…Both Fibonacci and qk representations have been 
applied in the optimal design of arithmetical hardware8, coding theory6, and cryptography11,14. 
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3. FUSED NUMBER  REPRESENTATION SYSTEMS 
 
In this section we introduce the Multiple Base Number System (MBNS), a collection or fusion of different number 

systems.  MBNS allows us to represent an integer X with various systems{ }(p) (q) (l)
n m kS , ,...,ZΤ  in the form 

( p) (q) ( l)
, n m k

, ,..,

S *...* , , , 0,1, 2 , ... (12)i j
i j k

X s Z p q l= ∗Τ =∑
 

where * is an arbitrarily chosen “fusion” operation (i.e., addition, multiplication, linear combination, etc.) and ,i js is 

either real or imaginary. Some noteworthy sij values include si,j∈{0,1}, si,j∈{-1,0,1}, si,j∈{0,1,j} where j = 1.−  

Also to be noted is that (p) (q) (1)
m n kS , ,..., ZΤ  can be both real and complex number systems. Changing the parameter 

values in these systems provides greater representation possibilities. The map below sums up the basic idea behind 
this new number system.

 

 
In the following, we focus on a subset of MBNS, namely the two base representation system which allows us to fuse 
two number systems together. The ideas below, however, can be extended in fusing multiple other number systems. 
  

Two Base Representation System:  A subset of MBNS in which two number systems, (p) (q)
m nS ,Τ , are fused into a 

single parametric representation of the form: 
( p ) ( q )

, m n
,

S , , 0 ,1, 2 ... (1 3)i j
i j

X e p q= ∗ Τ =∑
 

, , , ,{0,1}, { 1,0,1}, {0,..., | |}, 1,2,... {0,1, , 1} 1 .i j i j i j i je or e e D q q e j j j etc∈ ∈ − ∈ = = ∈ + = −
where n, m∈{0,1,2,3…} and p and q are parameters. Examples of (13), in which we let * be the multiplication 
operation, are provided below to illustrate the form’s versatility. 

• ,S 2 , 1, {0,1}p m q
m n i jT e= = ∈ , gives the radix-2 representation (see 6); 

                                                     
 

• ,S 3 , 1, {0,1,2}p m q
m n i jT e= = ∈ , gives the radix-3 representation (see 7);

                                      
 

• ,S 2 , {0,1}p n q
m n i jT e= = ∈ , gives the radix -4 representation; 

• ,S 2  or 3 , 1, { 1,0,1}p m m q
m n i jT e= = ∈ − , gives the signed–digit number system (see 6,7); 

• ,S 2 , 3 , {0,1}p m q n
m n i jT e= = ∈ , gives the double-base representation (see 10); 

                                 
 

• ,S  or , 1, {0,1},p p p q
m m m n i jF L T e= = ∈  gives the F-L p-representation(see 9);    

                         
• ,S  or , , { 1,0,1},p p p q n

m m m n i jF L T q e= = ∈ −
 
gives a so called signed-digit F-L p- representation. 
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• ,S  or , or , {0,1},p p p q q q
m m m n n n i jF L T F L e= = ∈

 
gives a new, so called double F-L base p- representation. 

 
These examples emphasize the multiplication representation systems of Fibonacci and Lucas numbers and their 
variations (i.e., non-weighted/ weighted F-L p-numbers), though they can be expanded to include Golden Ratio 
numbers and other systems. We note that it is also possible to fuse these representations using addition:  

(p) (q)
, m n

,

{aS }, , 0,1,..., 1,                    (14)i j
i j

X e b d p q k= + Τ + = −∑
 

where a,b and d are constants. This linear combination of systems may lead to interesting representations such as. 

k k k k k k k k
1 1 5{a f b l } where a  and b  are constants: i.e., a  = , b  =  or                     (15)
2 2 2k

k

X e= +∑  

Definition:  A number representation of an integer X is called a canonical or normal form if it is a standard way of 

presenting X.  For example, the double base representation is a canonical form when  
1

| |n
n

d e
≥

=∑  is min.15 Below we 

present an approach for determining the near canonical form of a certain two base representation. 

Two Base Representations and the Greedy Algorithm: One way to find a certain two base representation of an n 
integer is to use the Greedy approach11, which determines the best approximation of n, computes the difference, and 
reapplies the process. The general formula that describes this two base representation is  
 

1

,                   (16)ai j

l

i b
i

n s A B
=

= ∑
 

 
where si is a set of predefined coefficients. Note this formula allows for the introduction of nontrivial coefficients in 

multiple base expansions. To illustrate the formula, let n= 841232.  Setting 3  , 2  ,ji
a a bji i j

ba
bA or F B or F= = we 

can express n as a sum of double base terms or Fibonacci products using the Greedy Algorithm. 
 
         Double Base Expansion: 841232 = 2738 + 1424  1424 = 2434 + 128  128 = 2730 
         Fibonacci Expansion: 841232 = 832040 + 9192  9192 = 8362 + 830  830 = 754 +76  76 = 68 + 8 
 

Note that we call any system of expressing an integer n with mixed Fibonacci numbers in the form 
,

,
m n m n

m n

d F F∑ the 

Double Fibonacci Base Number Representation System (referred to as FBNS or Fibonacci for short). 
 
The Greedy Algorithm does not always produce a canonic representation. For example, consider the integer X=49 
expressed in DFNS. The representation produced by the Greedy Algorithm is X=21*2+6*1+1*1. However, the 
canonic representation (only one such form exists for the integer 49) is X=13*3+5*2. Determining the canonical 
form of such a two base representation is often difficult, especially for very large integers. The Greedy Algorithm is 
thus used as a straightforward means of producing a near-to-canonic form. Integers represented using the Greedy 
Algorithm can have varying representation efficiencies based on the chosen two base representation system. That is, 
the minimal number of nonzero digits needed to represent each integer changes with respect to the chosen 
representation system of the form (16). In the following, we compare two representation systems generated from 
(16), namely the double base and the Fibonacci expansions, to see which system is more efficient in representing 
integers.   We begin our comparison between the double base and Fibonacci expansions by analyzing the possible 
direct products or terms generated by each system.  
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Comparison of Double Base and Fibonacci Products Less than 10,000 

 

The first table below provides near canonical Fibonacci and double base expansions of integers ≤ 100 calculated 
using the Greedy Algorithm. In nearly half of the integers considered one method of expansion fares better than the 
other. That is, one system uses fewer terms to represent the respective integer. In 30 cases (represented by green 
cells), the Fibonacci system is more efficient in representing the given integer. In contrast, the double base system is 
more efficient in only 19 cases (represented by red cells). For the remaining cases (represented by non-shaded cells), 
both representation systems use the same number of terms to express the given integer. We can continue testing this 
idea. 

Terms Below Double Base Fibonacci Terms In Common
100 20 26 10
1000 40 58 13

10,000 67 101 14

These tables provide all double base and Fibonacci 
products less than 10,000. Note that terms <100, 
>100 and <1000, >1000 and <10,000 are 
represented with green, yellow, and orange cells, 
respectively.  From the data tables, we can see that 
the Fibonacci and double base expansions are both 
very sparse. Still, the Fibonacci system seems to 
represent many numbers with fewer terms. We can 
attribute this to the fact that the Fibonacci system 
increases at a slower pace (though still quite 
quickly) than the double base system. As a result, 
more integers are represented as direct products of 
Fibonacci numbers than of binary and ternary 
numbers.  

For example, we can see that there are 101 different 
Fibonacci products less than 10,000 (26 below 100, 
32 below 1000 and above 100, and 43 below 10,000 
and above 1000). In comparison, there are only 67 
double base products less than 10,000 (20 below 
100, 20 below 1000 and above 100, and 27 below 
10,000 and above 1000). An interesting observation 
here is that as we allow the number limit to increase 
(say from below 1000 to below 10000), the number 
of Fibonacci products increases more than the 
number of double base products (double base: 20  
27, Fibonacci: 32 43). 

In other words, the difference in the number of 
Fibonacci and double base products increases as we 
allow our number range to increase (from 12=32-20 
to 16=43-27).  Generally, given its larger 
representation of numbers, which becomes more 
prominent as we allow our number range to 
increase, the Fibonacci product sequence is more 
efficient in representing numbers while maintaining 
a high degree of sparseness. We test this idea on 
various integers.  
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From the table second table below, we see that the Fibonacci system is more efficient 37 times (represented by green 
cells) while the double base is more efficient only 21 times (represented by red cells). This data further affirms the 
idea that Fibonacci systems are more often than not more efficient in representing given integers. That is, the 
Fibonacci systems represent many more numbers with fewer terms than double base systems. As the number of 
Fibonacci products increases more than the number of double base products, we expect the Fibonacci system to 
generally become even more efficient as our given integer value increases (of course, there are exceptions to this 
expectation: consider, for instance, the above example X=841232 discussed above).  

  
.  
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4. APPLICATIONS 
We will now apply MBNS representations such as FBNS to construct more efficient and error resistant barcode 
systems. We consider 2D barcodes as they expand traditional 1D barcode information capacities by adding the 
vertical array of bars and spaces. By examination of mobile phone cameras and the normal use cases, the minimum 
requirements of the 2D codes for camera phones are identified4. They are a) Matrix codes are preferred to Stacked 
codes. b) Code size should grow proportionally to the data and have no sudden “jumps.” c) Code should be easily 
detected and read regardless of its size and data amount. d) Code should have read flexibility so that it can be read 
under any angle. 2D code should also be efficient and widely supported. For instance, although 2D barcodes can be 
of any shape, most are made up of squares and rectangles due to pixel efficiency. Moreover, 2D barcodes are often 
not found in color and grayscale as black and white barcodes are more widely supported and allow for faxing and 
photocopying without losing readability. Taking these criteria into account, we propose representing the input data 
with MBNS representations such as DBNS and FBNS.  The procedures for doing so are outlined in the flow chart 
below:            

 
 

Note that for enhanced security, both algorithms may also use encryption techniques. As MBNS representations are 
sparse, they are efficient in representing given data and can lead to high performance barcodes. In general, these 
systems are also well equipped for error correction.   In the following, we test our algorithms against the traditional 
base 2 representation used in QR code3. Though our algorithms are explained through a numeric example, they can 
be extended to different types (numeric, alphabetic, alpha-numeric, etc.) and languages of information. 
 
Algorithm 1 (Illustrative Example):  Using the Double Base Number System to Represent Input Data “78249” 

1. Separate the data “78249” into one bit groups.  
2. Choose a representation system: DBNS or FBNS. 
3. Determine each groups DBNS representation, for instance by using the Greedy Algorithm. 
4. Fill in MNBS tables for each group representation and align them adjacently to one another.  Though we 

can select from various representation symbols and colors, we here construct our barcode from black and 
white squares for pixel efficiency. We also add a boarder to our barcode by an outlining row and column. 
This way we can easily preserve the table format that we used in our generation. 

DBNS Table and Barcode 

                       

SPIE-IS&T/ Vol. 7542  754207-8



 

 

FBNS Table and Barcode* 

           

*Note that because of repetition, we can construct modified FBNS tables without losing representation possibilities. 
In this case, we can ignore the last two rows (or columns). We can also represent the number 9 as 8*1+ 1*1 instead 
of as 3*3, and get rid of one additional column (or row). The FBNS barcode above is generated using this idea. 

Algorithm 2:   We now provide several versions of Algorithm 2 and apply them to coding the data “78249.” Note 
that due to redundancy in systems such as FBNS, we are often not limited to shading in a particular cell and have the 
possibility of choosing a cell we find more conducive to easy reading (i.e., a cell that is not adjacent to any other 
filled cells). 

Coordinate Code Coordinate Code Number of 
Coordinates

Code     Coordinate Code Number of 
Coordinates 

Code Coordinate Code

0 00 0 0011 1 01 0 0011 1 00 0 0000
1 01 1 0101 2 10 1 0101 2 01 1 0011
2 10 2 1001 3 11 2 1001 3 10 2 0101
3 11 3 0110 3 0110 4 11 3 1001

4 1010 4 1010 4 0110
Version A Version B Version C 5 1100 Version D 5 1010

           6 1100
7 1111

 

     
As the charts above illustrate, we can vary many of elements of our algorithms including the number of elements in 
a group, the representation system, the code for representing coordinates, the matrix holding the code representation, 
and the barcode shape, color, and boarder. We can also vary the number of representation systems to construct 
higher dimensional barcodes. For instance, we can us three base representations (instead of the two base used here) 
to construct 3-D barcodes. 

Error Correction and Code Versions: The code versions are generated using Hadamard matrices16, which can be 
used to define some error correction codes. Note that code versions may also be generated to use other error 
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correction codes such as Reed-Solomon code. Though Version A may be the most compact, it may not be used for 
all MBNS systems and does not provide the error correction capabilities of the others. Hadamard code can be used 
to correct 14 −n  errors and detect 4

n  errors in an n-bit encoded block. The table below illustrates some of the 
various levels of error correction using versions of Algorithm 2. Though code that can reach a data correction level 
of 15% is regarded as satisfactory17, we can reach a level of up to 25%. 
 

Levels of Error Correction Using Algorithm 2 
  # Bits/ Coordinate Error Detection Capability Error Correction Capability

Version Bits % Bits % 
A 2 - - -

B,C,D 4 1 25 -
E 8 2 25 1 12.5 
F 16 4 25 3 18.75 
… … … … … … 

 
Comparison to QR Code:  We now test our method against that used in QR Code. In order to make this 
comparison, a brief overview of how QR code is generated is provided below. Input data in QR Code can be 
represented in several modes, as illustrated in the table below. Each mode has a corresponding four-bit-long binary 
representation as well as a separate bit count for a group of input characters. For instance, the binary representation 
and reserved bit count for mode numeric is 0001 and 10, respectively; for alphanumeric mode, 0010 and 9, 
respectively. The binary representation corresponding to the input data is placed at the beginning of the encoded QR 
code. For instance, if we were to encode the zip code “78249”, we would begin the code with the bits 0001 and 
reserve 10 bits for every group of numeric characters in the input data.  Below we finish encoding the zip code 
“78249” in order to specifically illustrate how QR encoding works in numeric mode.  
 
 In order to represent 78249 in numeric mode, we group the input data with characters or bits of 3 or less. The data 
“78249” is separated into one 3 bit and one 2 bit group: “782” and “49”. Each full 3 bit group is reserved a 10 bit 
binary representation. However, if the group contains fewer characters, say 2 or 1 bits, then a 7 or 4 bit binary 
representation is used respectively. Encoding “782” and “49” in 10 bit and 7 bit binary representations, respectively, 
we get: 1100001110 0110001. Adding on the binary representation corresponding to the QR numeric mode gives: 
0001 1100001110 0110001. To finish encoding the examples, we take the representation arrange it into 8 bit groups. 
0’s are added to groups at the end of these representations that have less than 8 characters: “78249” →00011100 
00111001 10001000. This is done to fit the size of the QR code, which varies according to which version is used. 
QR code has versions from 1 to 40, where version 1 (used here) is a 21x21 matrix and each following version 
increases in length and width by 4 cells so that version 40 is a 177x177 matrix. It should be noted that QR code is 
utilized up to version 10 for camera phones as a greater density exceeds the capabilities of a camera as an imager 
and thus cannot be successfully decoded (Kato, Tan).  This final code can be mapped to a barcode to form: 
 

 

In the presented example, the total codewords that need to be corrected are 24, requiring 48 additional error 
correcting codewords. In comparison, Algorithm 1 and 2 use 50 and 20 codewords, respectively, to encode the same 
data without error correction. At this stage, both algorithms offer exceptionally easy reads and security features.  
Error correction features can be added. For instance, we can achieve a similar error correction level using Version E 
in Algorithm 2 with only 70 codewords. Note that the custom design capability of both algorithms, including 
variations in shape, size, color, and coding representation, allows the symbol to provide additional security. A more 

QRcode has four levels of error correction: L, M, Q, and H. About 7%, 15%, 25%, and 30% 
or less of errors can be corrected with each respective level.   It is implemented using Reed-
Solomon Code, which requires twice the amount of codewords to be corrected. 

SPIE-IS&T/ Vol. 7542  754207-10



 

 

general comparison of how well QR code, Algorithm 1, and Algorithm 2 satisfy the criteria that optimize 2D 
barcodes for mobile phones17 is provided below. 

Comparison of QR Code, Algorithm 1, and Algorithm 2 

  
    Data 
Capacity 

Error 
Correction Scanability Design Security Additional Features 

      
Omni-

Directional 
Low (VGA) 
Resolution 

High 
Speed Divisible Scalable Custom   

QR Code + + + + + + - - - Small printout size 

Al- 1 + - + + + + + + + 

Easy to read, especially at a distance. 
Legible under varying lighting 
conditions. 

Al- 2 + + + + + + + + + 

Small printout size. Provides 
additional error correction and 
encryption capabilities 

 

5. CONCLUSION 
 
In this paper, we introduced a concept of fusing parametric number representation systems. We determined that 
these systems provide sparse, efficient, and potentially secure means of representing data. Using the features of these 
fused systems, we created two algorithms that generate high data capacity barcodes. These barcodes are easy to 
read, scalable in size, potentially divisible, and omni-directional. Because the amount and type of information within 
the symbol is user selectable, the user can determine the density of the barcode and thus solve resolution problem of 
camera phones. Moreover, by having the option of selecting various representation systems, the user is offered a 
secure means of representing data. One can use the algorithms’ custom design capabilities, in which symbol 
characteristics such as shape, size, and color can be varied, to provide additional security and carry more 
information. The generated barcodes also provide high percentage error correction and detection capabilities using 
the Hadamard or other error correction codes. By comparison, we found that many popular 2D barcodes, namely QR 
code, do not exhibit all these features. Finally, the proposed algorithms provide a viable alternative to current 2D 
barcodes and show a new direction in developing secure, reliable, and high capacity color and gray level barcodes. 
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